The Spectrum of Retinal Imaging

- Fundus Photography
- Monochromatic Photography
- Fluorescein Angiography
- ICG Angiography
- Scanning Laser Ophthalmoscopy
- Fundus Autofluorescence
- Optical Coherence Tomography

Disclosures

- No financial or proprietary interest related to the subject matter of this presentation.

The Spectrum of Retinal Imaging

- Retinal imaging devices utilize different portions of the electromagnetic spectrum.
- Wavelength is the physical distance between the crests of energy waves in the spectrum. (expressed in nanometers)

Fundus Photography

- Documentation
- Telemedicine/Retina Screening
Serial Fundus Photography

Fundus Photography
- Fundus photographs are often used as a reference to assist in interpretation of other diagnostic imaging procedures such as fluorescein angiography.

Fundus Camera Illumination
- The optical system of the fundus camera projects a ring of light from the internal strobe axially through the dilated pupil.
- The ring shape allows a separation of the outgoing and incoming illumination.

Fundus Cameras
- Traditional (mydriatic)
 - Requires pharmacologic dilation
- Non mydriatic
 - Relies on physiologic dilation in a darkened environment
 - Results are often better WITH pharmacologic dilation

Traditional Fundus Camera
- Requires pharmacologic dilation
- Variable magnification settings
- Best for peripheral imaging
- Easier to shoot stereo photos
- Required for many clinical trials

Variable Magnification
- Wide Angle 50º
- Normal 35º
- High Mag 20º
Focus

- Optics of patient’s eye.
- Properly set eyepiece.
- Focus control.
- Auxiliary lens for high-plus or high-minus eyes.
- Both the reticle and the retina need to be sharp at the same time.

Focus: Setting the Eyepiece

- Ignore the eyepiece numbers, but pay attention to the crosshairs and retina.

Focus

- Rock focus knob until image is sharp.
- Use myopic or astigmatic control if needed.
- Use green filter to increase contrast while focusing.

Non-Mydriatic Fundus Camera

- User-friendly system designed with an infrared video focusing system that promotes physiologic dilation in a darkened room.

Dilation

Monochromatic Fundus Photography

- The practice of imaging the ocular fundus with monochromatic illumination to enhance visibility of various fundus structures or pathologies.
Monochromatic Fundus Photography

- The practice of imaging the ocular fundus with monochromatic illumination to enhance visibility of various fundus structures or pathologies.

Photographic Principles

- The use of contrast filters to alter subject tones in black-and-white photography.
- The increased scattering of light at shorter wavelengths.

Contrast Filters

- Alter the tonal rendition of different subject colors by introducing brightness differences between colors that would normally reproduce as similar tones of gray.

Fundus Structures

- Transparent
- Translucent
- Opaque

Short (Blue/Cyan) Wavelengths

- Anterior translucent scattering structures
Medium (Green) Wavelengths
- Retinal vasculature
- Hemorrhages
- Drusen
- Exudates

Long (Red) Wavelengths
- RPE disturbances
- Choroidal ruptures
- Choroidal nevi
- Melanomas
Common Use: Pre-IVFA “Red Free”

Tips for Fundus Photography
- Set the camera eyepiece correctly
 - Ignore the numbers
 - Relax accommodation to distance.
- Use green filter to focus on vessels or with photophobic pt.
- Maintain consistent technique from visit to visit with serial imaging.
- Facilitate best possible dilation.

Fluorescence Imaging
- Fluorescein angiography (retinal vasculature)
- ICG angiography (choroidal vasculature)
- Fundus autofluorescence (RPE)

Fluorescein Angiography

Fluorescein Sodium
- Fluorescein sodium is a fluorescent dye synthesized from petroleum derivatives resorcinol and phthalic anhydride.
- Synthesized by Adolf Baeyer in 1871.
- Baeyer received the Nobel Prize in 1905.
Fluorescein Sodium

- Absorbs blue light, with peak absorption and excitation occurring at wavelengths between 465-490nm.
- Fluorescence occurs at the yellow-green wavelengths of 520 to 530nm.

“More Uses Than Duct Tape”

- Industrial uses:
 - Track/measure water flow dynamics
 - Track hazardous spill dispersion patterns
 - Identify point source of pollutants
 - Search and rescue marker
 - Detect obstructions or leaks in plumbing/sewage

“More Uses Than Duct Tape”

- Medical uses:
 - Intra-operative blood flow in surgical resections
 - Monitor chemotherapy in isolated limb perfusion
 - Intra-operative predictor of intestinal viability
 - Indicator of perfusion in gangrene or severe burns

“More Uses Than Duct Tape”

- Ophthalmic uses:
 - Applanation tonometry
 - Vital stain for ocular surface disorders
 - Nasolacrimal duct obstructions
 - Seidel test for corneal wound leaks

Fluorescein Sodium

- In angiography we use the water-soluble sodium salt of fluorescein.
- Maximum fluorescence occurs with a pH of 8 to 9.8.
- 500mg administered as a bolus injection, into the antecubital vein.

Fluorescein Angiography

- First performed by Novotny & Alvis in 1959.
- Can be captured with a fundus camera equipped with exciter/barrier filters or a confocal scanning laser ophthalmoscope.
Phases of an IVFA

- Early: First 45-60 seconds
- Mid: 2-4 minutes
- Late: 7-10 minutes

Sequencing

- The arm-to-retina circulation time varies, but in a normal patient takes 10-12 seconds.
- Rapid sequence photography begins before the dye is visible.
- Images are routinely captured at a rate of 1 fps until maximum fluorescence occurs.
- During this dynamic early phase only one eye can be captured.
Diagnostic Uses

- Diabetic retinopathy
- ARMD
- SRNVM from other causes
- CRVO
- BRVO
- Central serous chorioretinopathy
- Cystoid macular edema
- Hereditary dystrophies
- CRAO
- BRAO
- Retinal arterial macroaneurysms
- Pattern dystrophies of the RPE
- Choroidal tumors
- Hypertensive retinopathy
- Chorioretinal inflammatory conditions
Side Effects

- Discoloration of the urine for 24 to 36 hours.
- Slight yellow skin discoloration that fades within a few hours.
- Nursing mothers should be cautioned that fluorescein is also excreted in human milk.

Complications and Adverse Reactions

- Extravasation of dye
- Transient nausea
- Vomiting
- Pruritis
- Urticaria
- Bronchospasm
- Laryngeal edema
- Anaphylaxis
- Hypotension
- Syncope
- Seizures
- Myocardial infarction
- Cardiac arrest

Tips for IVFA

- Center the illuminating beam of the fundus camera within the dilated pupil and pre-focus on area of interest before starting transit.
- Start timer at the beginning of the injection & take second frame when injection is complete.
- Begin rapid sequence imaging before dye is visible.
- Capture images at a rate of one frame per second until maximum fluorescence occurs.
- “Tell a story” with representative frames from all 3 phases.

Indocyanine Green (ICG)

- First used as a dye in the manufacture of Kodak Wratten filters.
- Used for cardiac output and liver function studies.
- Fluorescence occurs in the infrared range.
- Low efficiency of fluorescence compared with fluorescein.
- Large molecules don’t leak from the fenestrations in the choroidal vessels.
Indocyanine Green (ICG)

- Peak excitation: 805nm
- Peak emission: 835nm

ICG/Near Infrared Wavelengths

- Longer wavelengths allow better penetration through blood and RPE, allowing visualization of the choroidal vasculature.

Scanning Laser Ophthalmoscope

- The confocal scanning laser ophthalmoscope (cSLO) is an instrument that can be used for several imaging modalities including IR, red-free, IVFA, ICG, and fundus autofluorescence.

Clinical Confocal Imaging Devices

- Spectralis HRA
- Optos
- Nidek F-10
- Eidon

cSLO: Spectralis HRA

- 488 nm FA excitation and blue reflectance
- 790 nm ICG excitation
- 820 nm IR reflectance
- 565 nm green reflectance for MultiColor
Scanning Laser Ophthalmoscope

- A monochrome laser scans across the fundus in a raster pattern to illuminate and record successive elements of the retina, point-by-point at speeds up to 24 milliseconds.
- Multiple monochrome laser images taken simultaneously can be combined to create pseudo-color images.

Scanning Laser Ophthalmoscope

- A confocal pinhole blocks non image-forming light from reaching the sensor to minimize scatter and improve contrast.

Scanning Laser Ophthalmoscope

- The confocal pinhole reduces the effects of short wavelength scatter from cataracts or other media opacities.

Scanning Laser Ophthalmoscope

- The confocal pinhole reduces the effects of short wavelength scatter from cataracts or other media opacities.

cSLO Pseudo Color

- Secondary effect of the confocal pinhole is a tonal shift when focus is adjusted.

IR Reflectance 820 nm
Eye Tracking/Sampling

- Smoothes noise and increases exposure

Fundus Autofluorescence (FAF)

- The term “autofluorescence” is used to distinguish fluorescence that can occur naturally from fluorescence that is derived from administration of fluorescent dyes.
- Optic nerve drusen, astrocytic hamartomas, lipofuscin pigments in the retina, and cataracts can exhibit natural fluorescence.

Fundus Autofluorescence (FAF)

- Lipofuscin is a fluorescent pigment that accumulates in the RPE as a metabolic byproduct of cell function.
- Lipofuscin deposition normally increases with age, but may also occur from RPE cell dysfunction or an abnormal metabolic load on the RPE.
Fundus Autofluorescence

- Fundus autofluorescence can be captured with either a modified fundus camera or cSLO.

FAF Findings

- The optic nerve, retinal blood vessels, and the fovea normally appear dark against a variable background of fluorescence from the RPE.
- The absence of the RPE at the optic nerve head causes it to appear dark.

Findings/Interpretation

- Hyperfluorescence is a sign of increased lipofuscin accumulation, which may indicate degenerative changes or oxidative injury.
- Hypofluorescence usually indicates missing or dead RPE cells.

Documentary vs. Diagnosis

- Documentary:
 - Geographic atrophy
 - Pigmentary changes (RP, ICSC...)
- Diagnostic:
 - Early detection of bullseye/retinal toxicity
 - Buried disc drusen
 - ICSC activity/leakage?

Diagnostic Applications

- Geographic atrophy that appears as a “window defect” in fluorescein angiography will appear dark in autofluorescent imaging.

Diagnostic Applications

- The role of lipofuscin in macular degeneration isn’t fully understood, but increased autofluorescence may precede development or progression of geographic atrophy in ARMD.
Diagnostic Applications

• Serial FAF imaging can be used to track progression of geographic atrophy.

The Eye in Cross-Section

OCT Imaging

• Super luminescent diode light source
• Near-infrared wavelength: 820nm
• Analogous to ultrasound
• Time-of-flight delay (light echoes)
• Real time cross-sectional imaging
• Resolution measured in microns: >10

Cross-Sectional Imaging

“Virtual Biopsy”
Anatomy of an OCT Scan

- Identifiable layers:
 - Posterior hyaloid
 - RNFL
 - Plexiform layers
 - Photoreceptors
 - RPE
 - Choroid

Cross-Sectional Imaging

- Measures both depth/distance and intensity of reflectivity.

Common/Practical Use

- Line scans for structural changes.
- Line scans for detection of subretinal or intraretinal fluid.
- Volume scans for quantification of thickness or edema.

- Optic nerve volume scan
 - Radial lines centered on cup
 - Cube Scan centered on disc
- RNFL scan
 - Circle around disc
Anatomical Landmarks

- Anatomically, the fovea sits 5-7 degrees below the midpoint of the disc.

Scanning Technique

- Pupils dilated?
- Head/chin straight and square.
- Encourage normal blinking pattern.
- Start with fast scan protocol.
- Optimize polarization (“Enhance”).
- Don’t forget focus.
- Move joystick (or mouse controls) to maximize signal “sweetspot”.

Scanning Strategies

- Start with “Fast” or “HS” volume scans as a quick overview and watch for pathology during acquisition
 - Fast Macular Thickness or Macular Cube Scan.
Scanning Strategies

• High-resolution horizontal & vertical single line scans centered on fovea.

Fixation Issues

• Macular pathology often makes it difficult for patients to establish or maintain central fixation.

Eccentric Fixation

• Let patient establish fixation.
• Capture scans on fixation first.
• Then try to center scan pattern over fovea or area of pathology & repeat:
 – click and drag the scan pattern over foveal depression (if visible).
 – “Anchor” scan on disc margin if depression isn’t identifiable.

“Anchor” Scan
What Defines a Quality Scan?

- Centered on target anatomy/pathology.
- Good edge-to-edge reflectivity.
- Good saturation/signal strength.
- As horizontally level as possible.
- Free from artifacts.

Scan Quality

- Scan quality numbers (S/N ratio)
 - Cirrus Signal Strength of >5
 - Spectralis Quality Factor >25
 - Topcon Quality Factor >30-50
 - Optovue SSI >35-50 (different sources)
- Don’t be a slave to the numbers!
 - How the image looks is more important than the quality number.
Signal Strength

- Focus
- Polarization
- Z-offset
- Alignment within pupil
- Media opacities
- Tear film disruption
- Dirt/debris on objective

Signal Strength/Focus

Images courtesy of Gary Miller, CRA, OCT

Z-Offset/Signal Strength

ART: 100 frames, Q = 20

Images courtesy of Gary Miller, CRA, OCT

Z-Offset/Signal Strength

ART: 100 frames, Q = 28
Z-Offset/Signal Strength

ART: 100 frames, Q = 36

Signal Interference

- Signal strength can be adversely affected by several common eye conditions/findings
 - Cataract
 - Corneal opacities
 - Floaters/Asteroids
 - Intraocular blood
 - Astigmatism
 - Poorly centered IOL/small capsulotomy

Media Opacities

Images courtesy of Gary Miller, CRA, OCT

Signal Interference

- A major culprit is dry eye or inadequate tear film.
- Tear film can be disturbed by several routine eye examination procedures:
 - applanation tonometry.
 - diagnostic contact lens exam.
 - gonioscopy.

Signal Interference

- Whenever possible, perform OCT before any procedures that can compromise integrity of the tear film.
OCT Angiography (OCT-A)

- Samples same area of the retina after correcting for eye movement.
- Detects motion (blood flow).
- Depth encoded en-face map of blood flow.

Tips for OCT

- “Flirt” with the top of the scan window.
- Make sure tear film is intact/refreshed.
- Look for good edge-to-edge illumination & saturation.
- “Anchor” scans to midpoint of optic disc margin if unable to detect fovea.
- “Anchor” scans to recognizable anatomy if scanning atypical areas or angles.

The Spectrum of Retinal Imaging

- Fundus Photography
- Monochromatic Photography
- Fluorescein Angiography
- ICG Angiography
- Scanning Laser Ophthalmoscopy
- Fundus Autofluorescence
- Optical Coherence Tomography

Thank You!

- Questions?
 timbennett@eye-pix.com
- Handouts:
 www.eye-pix.com
The Spectrum of Retinal Imaging

Fundus Photography
- Fundus photographs are used for clinical documentation, teaching, retinal screening, remote consultation, and clinical trials.
- Some retinal details may be easier to identify in stereoscopic fundus photographs compared with direct examination.
- Serial photographs are commonly used to track disease progression.

Fundus Camera
- The modern fundus camera is a horizontally mounted instrument with an internal electronic flash and an attached 35mm camera or digital sensor.

Inversion Artifacts
- Common artifact in SD-OCT

SD Inversion
- Pathology is “too tall” for scan window
 - > 2mm
 - High myope, RD, traction, etc.
- Too close to eye/top of scan window.
- Only part of image inverts.
- Image may partially or completely flip for a few frames during sampling.
Scanning artifacts

- Placement of scan image within scan window (z-offset) is very important for minimizing inversion artifacts.
- Can be a trade-off between maximum signal strength and partial inversion.
EDI/FDI

- Start sampling image and engage EDI feature about half way through sample.
Inversion Artifacts

- Pathology is “too tall” for scan window
 - > 2mm
 - High myope, RD, traction, etc.
- Too close to eye/top of scan window.
- Only part of image inverts.
- Image may partially or completely flip for a few frames during sampling.
Signal Interference

- Frequent blinking and/or instillation of artificial tears often improves image quality.

Oogies on My Lens!

Review: Tips for Fundus Photography

- Set the camera eyepiece correctly
 - Ignore the diopter numbers.
 - Relax accommodation to distance.
 - Make sure the reticle and the retina appear sharp at the same time.
- Use green filter to focus on vessels or with photophobic pt.

Review: Tips for Fundus Photography

- Maintain consistent technique from visit to visit with serial imaging.
- Facilitate best possible dilation (mydriatic or non-myd).

Review: Tips for OCT

- Head/chin straight and square
 - Important for consistent alignment of serial scans.
 - Helps proper anatomic alignment when using horizontal scan patterns.
- Encourage normal blinking pattern
 - It’s our job to capture images between blinks!
- Use artificial tears on patients with DES or compromised tear film.

Review: Tips for OCT

- “Flirt” with the top of the scan window.
- Look for good edge-to-edge illumination & saturation.
- “Anchor” scans to midpoint or bottom of optic disc margin if unable to detect fovea.
- “Anchor” scans to recognizable anatomy if scanning atypical areas or angles.
Thank You!

• Questions? timbennett@eye-pix.com
• Handouts: http://eye-pix.com/event/lecture-tips-and-tactics-for-retinal-imaging/

Common Uses of OCT

• Line scans for structural changes
• Line scans for detection of subretinal or intraretinal fluid
• Volume scans/maps for measurement of thickness or swelling

Fundus Camera

Fundus Photography